Abstract

The recent discovery of phytochrome-like photoreceptors, collectively called bacteriophytochromes, in a number of bacteria has greatly expanded our understanding of the origins and modes of action of phytochromes in higher plants. These primitive receptors contain an N-terminal domain homologous to the chromophore-binding pocket of phytochromes, and like phytochromes, they bind a variety of bilins to generate photochromic holoproteins. Following the chromophore pocket is a domain similar to two-component histidine kinases, suggesting that these bacterial photoreceptors function in phosphorelay cascades that respond to the light environment. Their organization and distribution support the views that higher-plant phytochromes evolved from a cyanobacterial precursor and that they act as light-regulated kinases. With the ability to exploit bacterial genetics, these bacteriophytochromes now offer simple models to help unravel the biochemical and biophysical events that initiate phytochrome signal transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call