Abstract
Microbial communities host many auxotrophs—organisms unable to synthesize one or more metabolites required for their growth. Auxotrophy is thought to confer an evolutionary advantage, yet auxotrophs must rely on other organisms that produce the metabolites they require. The mechanisms of metabolite provisioning by “producers” remain unknown. In particular, it is unclear how metabolites such as amino acids and cofactors, which are found inside the cell, are released by producers to become available to auxotrophs. Here, we explore metabolite secretion and cell lysis as two distinct possible mechanisms that result in the release of intracellular metabolites from producer cells. We measured the extent to which secretion or lysis of Escherichia coli and Bacteroides thetaiotaomicron amino acid producers can support the growth of engineered Escherichia coli amino acid auxotrophs. We found that cell-free supernatants and mechanically lysed cells provide minimal levels of amino acids to auxotrophs. In contrast, bacteriophage lysates of the same producer bacteria can support as many as 47 auxotroph cells per lysed producer cell. Each phage lysate released distinct levels of different amino acids, suggesting that in a microbial community the collective lysis of many different hosts by multiple phages could contribute to the availability of an array of intracellular metabolites for use by auxotrophs. Based on these results, we speculate that viral lysis could be a dominant mechanism of provisioning of intracellular metabolites that shapes microbial community structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.