Abstract
Abstract Because of the difficulty and cost of detecting waterborne enteric pathogens, indicator organisms have been used since the beginning of the twentieth century. Much of the work in this area has focused on bacterial indicators, such as coliform and fecal coliform bacteria. However, it has been recognized in the last 30 years that these traditional indicators do not always reflect the waterborne occurrence of human pathogenic viruses and protozoa. Thus, bacteriophages have been investigated as a better indicator of these groups of pathogens in water, as models of enteric virus removal by treatment processes, and to examine the fate and transport of enteric viruses in the environment (12). The term ‘‘indicator organism’’ is often not clearly defined. By contrast, an ‘‘index organism’’ is usually defined as one related to the occurrence of a selected surrogate microorganism or microorganisms (table 45-1). The relationship may be direct, such as an index of human viruses, or indirect, such as an index of fecal pollution or types of fecal pollution (i.e., human or animal) (27). The criteria for an index organism are very similar to those commonly used for bacterial fecal indicators. An indicator organism, on the other hand, is measured to check the performance of a treatment process against previously set standards. For example, an indicator is used to evaluate the performance of drinking-water disinfection for the inactivation of enteric viruses. To serve as an effective indicator, the resistance of the indicator organism and the pathogen to the disinfectant should be similar.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have