Abstract

The elimination of bacterial pathogens from water using ultraviolet C light-emitting diodes (UVC-LEDs) is a critical technology in terms of hygiene and sanitation. This technology has several advantages, such as low energy consumption, no heating requirements, and high effectiveness. Although several studies have reported the bactericidal effect of UVC-LEDs, little information is available on their bactericidal effect on water reservoirs contaminated with microorganisms. Therefore, the aim of this study was to optimize the bactericidal effects of UVC-LED irradiation, particularly at a wavelength of 278nm, against major foodborne gram-positive and gram-negative pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, and Listeria monocytogenes. The efficiency of the bactericidal effect of UVC-LED irradiation was determined based on three variables: exposure time (A, 0-60min), stirring speed (B, 0-100rpm), and volume of water (C, 400-1200mL). To optimize the conditions, the operation of the designed model and results analysis were carried out using Box-Behnken design (BBD) and response surface method (RSM). The final conditions optimized for an effective bactericidal activity included a 60min exposure time, a 100rpm stirring speed, and 400mL of liquid volume. Furthermore, the validation of the optimized model using the predicted values was calculated by the program, which was conducted by matching the actual values within standard deviations. The present study revealed that the optimization of a UVC-LED irradiation model is a promising approach for effectively controlling the contamination of water reservoirs by bacterial pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.