Abstract

Calmodulin purified from bacteria which express a cloned chicken calmodulin gene can be selectively conjugated with ubiquitin, using enzymes present in reticulocyte extracts. Analyses of peptide products generated from limited proteolytic digestion of the calmodulin conjugate containing a single ubiquitin indicate that lysine 115 on calmodulin is the site of linkage. This linkage site is identical to that previously reported for calmodulin purified from Dictyostelium discoideum. Substrate-dependent ATP hydrolysis by a partially purified ubiquitin conjugation enzyme system from reticulocyte extracts was used to determine the enzyme affinity to calmodulin. Km values of 7 and 9 microM were determined for dictyostelium and the bacterially expressed calmodulin, respectively. The bacterially expressed calmodulin, unlike the Dictyostelium protein, can also form conjugates containing a 2-5 molar ratio of ubiquitin but at a slower rate than that observed for conjugation at lysine 115. Results from these studies further support our hypothesis that the post-translational methylation of lysine 115 found in most forms of calmodulin serves the important function of protecting calmodulin from ubiquitination and from degradation by the cytoplasmic ubiquitin-dependent proteolytic pathway. The capability of the bacterially expressed calmodulin to form conjugates with a high molar ratio of ubiquitin suggests that the post-translational acetylation of the N terminus of calmodulin may serve a similar function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.