Abstract
Tomato (Solanum lycopersicum) is well-known as a model for study of plant–pathogen interactions, since it is a crop of global relevance and susceptible to multiple bacterial, fungal, viral and nematode pathogens. Among bacterial phytopathogens, the actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm) is the causal agent of bacterial wilt and canker of tomato, considered a quarantine disease at international level. The tomato–Cmm interaction has been studied to decipher the pathogenicity mechanisms in Cmm, susceptibility mechanisms in tomato, molecular basis of resistance to Cmm in wild species relative to domesticated tomato, and the level of genetic variability in Cmm. The objective of this review is to discuss recent advances in tomato–Cmm compatible interaction, which can be integrated for application in early diagnosis and biological control of bacterial wilt and canker of tomato. Further study of plant–microorganism interactions is a promising field for improvements in tomato pathogen resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.