Abstract

ABSTRACT TiO2 and ZnO nanoparticles are well known for their photocatalytic and ultraviolet (UV)-absorbent properties and have successfully entered into the market as consumer products. Large volume production of these nanoparticles by industries require environmentally friendly processes of synthesis. In this article, we show that when challenged with an appropriate precursor, the bacterium Actinobacter spp. can lead to the extracellular synthesis of ZnO and TiO2 nanoparticles. The biological way of synthesizing these materials probably leads to the in situ doping of elements like C, F, and N into their crystal lattices, which is evidenced by a red shift in the absorption edge. Because the doping is expected to affect the photocatalytic activity of these materials under different light conditions, such investigations have also been undertaken here. Further, the biocompatibility of these nanomaterials (cytotoxicity and genotoxicity) has also been investigated in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.