Abstract

Bacterial plasmids encode resistance systems for toxic metal ions, including Ag +, AsO 2 -, AsO 4 3-, Cd 2+, Co 2+, CrO 4 2-, Cu 2+ Hg 2+, Ni 2+, Pb 2+, Sb 3+, TeO 3 2-, Tl + and Zn 2+. The function of most resistance systems is based on the energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The Cd 2+-resistance ATPase of Gram-positive bacteria (CadA) is membrane cation pump homologous with other bacterial, animal and plant P-type ATPases. CadA has been labeled with 32P from [ α- 32p]ATP and drives ATP-dependent Cd 2+ (and Zn 2+) uptake by inside-out membrane vesicles (equivalent to efflux from whole cells). Recently, isolated genes defective in the human hereditary diseases of copper metabolism, namely Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to bacterial CadA than to other ATPases from eukaryotes. The arsenic resistance efflux system transports arsenite [As(III)], alternatively using either a double-polypeptide (ArsA and ArsB) ATPase or a single-polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. The triple-polypeptide Czc (Cd 2+, Zn 2+ and Co 2+) chemiosmotic efflux pump consists of inner membrane (CzcA), outer membrane (CzcC) and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call