Abstract

Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria both in vitro and in vivo. OMVs are nano-sized spherical vehicles formed by lipid bilayer membranes and contain multiple parent bacteria-derived components. Based on the presence of bacterial antigens, pathogen-associated molecular patterns (PAMPs), adhesins, various proteins and the vesicle structure, OMVs have been developed for biomedical applications as bacterial vaccines, adjuvants, cancer immunotherapy agents, drug delivery vehicles, and anti-bacteria adhesion agents. In this review, we analyze the contributions of the structure and composition of OMVs to their applications, summarize the methods used to isolate and characterize OMVs, and highlight recent progress and future perspectives of OMVs in biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call