Abstract

Three novel cyclopenta-fused polycyclic aromatic hydrocarbons were synthesized, benz[ d]aceanthrylene,benz[ k]aceanthrylene, and benz[ j] acephenanthrylene, and evaluated for mutagenic activity in the Ames Salmonella typhimurium plate incorporation assay. The two benzaceanthrylene derivatives were active at low S9 concentrations in strain TA98 (4 and 27 rev/nmole respectively), as had been predicted from the calculated ΔE deloc/ β values of the carbocations derived from opening of the cyclopenta-fused epoxide rings, but the majority of this mutagenicity appeared to be due to free-radical decomposition products of spontaneous endo-peroxide formation. These compounds were therefore not further investigated. Benz[ j]acephenanthrylene was also an indirect-acting frameshift mutagen (8–12 rev/nmole in strain TA98), but unlike most of the previously assayed cyclopenta-fused polycyclic aromatic hydrocarbons exhibited no peak of activity at low S9 protein concentration. The principal metabolites formed from this compound by microsomes from Aroclor-treated rat liver were benz[ j]acephenanthrylene-4,5-dihydro-4,5-diol (necessarily derived from hydration of benz[ j]acephenanthrylene 4,5- oxide) and benz[ j]acephenanthrylene-9,10-dihydro-9,10-diol (precursor to benz[ j]acephenanthrylene-9,10-dihydrodiol 7,8-oxide, the bay-region diol-epoxide). Consideration of the reduced activity of this compound compared to the related structure chrysene, the S9 dependence curves, and the predicted ΔE deloc/ β values of the postulated active species, suggests that in contrast to most other cyclopenta-fused polycyclic aromatic hydrocarbons, bay-region diol-epoxide formation plays a greater role than epoxidation of the cyclopenta-fused ring in the metabolic activation of benz[ j]acephenanthrylene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.