Abstract

This study examined the effect of exposure of small and large intestinal epithelial cells to the bacterial lipopolysaccharide (LPS) on uptake of free form of vitamin B1, i.e., thiamin. The intestinal tract encounters two sources of thiamin: diet and the gut microbiota. Absorption of thiamin in both the small and large intestine occurs via a carrier-mediated process that involves thiamin transporters 1 and 2 (THTR-1 and -2). Complementary in vitro (human duodenal epithelial HuTu-80 cells and human colonic epithelial NCM460 cells), in vivo (mice), and ex vivo (human primary differentiated enteroid and colonoid monolayers) models were used. The results showed that exposure to LPS causes a significant inhibition in carrier-mediated [3H]-thiamin uptake by small and large intestinal epithelia, with no change in the levels of expression of THTR-1 and -2 mRNAs and their total cellular proteins. However, a significant decrease in the fractions of the THTR-1 and -2 proteins that are expressed at the cell membranes of these epithelial cells was observed. These effects of LPS appeared to involve a protein kinase A (PKA) signaling pathway as activating this pathway caused a reversal in the inhibition of thiamin uptake and level of expression of its transporters at the cell membrane. These findings demonstrate that exposure of gut epithelia to LPS (a situation that occurs under different pathological conditions) leads to inhibition in thiamin uptake due to a decrease in level of expression of its transporters at the cell membrane that is likely mediated via a PKA signaling pathway. NEW & NOTEWORTHY This study shows that the exposure of gut epithelial cells to bacterial LPS negatively impact the uptake process of the free form of vitamin B1 (i.e., thiamin). This appears to be mediated via suppression in the level of thiamin transporters 1 and 2 (THTR-1 and -2) expression at the cell membrane and involves a protein kinase A (PKA) signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.