Abstract
The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling. Mechanistically, IPA binds specifically with methionine adenosyl-transferase 2A (MAT2A) to promote S-adenosylmethionine (SAM) synthesis, which facilitates the DNA methylation of ubiquitin-specific peptidase 16 (USP16, a deubiquitinase), and in turn promotes Toll-like receptor 4 (TLR4) ubiquitination and NF-κB inhibition. Furthermore, IPA administration attenuates sepsis in mouse models induced by lipopolysaccharides (LPS), showcasing its potential as a microbial-derived adjunct in alleviating inflammation. Collectively, our findings reveal a newly found microbial metabolite-immune system regulatory pathway mediated by IPA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have