Abstract

Using high-throughput sequencing and Functional Annotation of Prokaryotic Taxa (FAPROTAX), this study aimed to elucidate the effect of bacterial dynamics on gaseous emission and humification of kitchen and garden wastes during composting augmented with microbial inoculants. Microbial inoculant addition at up to 0.9% resulted in a diverse bacterial community with more functional bacteria to amend gaseous emission and enhance humification. Microbial inoculation facilitated the enrichment of aerobic bacteria (e.g. the genus Bacillus and Thermobifida) to enhance cellulolysis and ligninolysis to advance organic humification. By contrast, several bacteria, such as the genus Weissella and Pusillimonas were inhibited by microbial inoculation to weaken fermentation and nitrate respiration. As such, bio-augmented composting with 0.9% microbial inoculant reduced the emission of methane by 11–20% and nitrogen oxide by 17–54%. On the other hand, ammonia and hydrogen sulphide emissions increased by 26–62% and 5–23%, respectively, in bio-augmented composting due to the considerable proliferation of the genus Bacillus and Desulfitibacter to enhance ammonification and sulphur-related respiration. Results from this study highlight the need to further develop efficient and multifunctional microbial inoculants that promote humification and deodorization for bio-augmented composting of kitchen waste as well as other carbon and nutrient rich organic wastes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call