Abstract

Degradation of EDTA (ethylenediaminetetraacetic acid) or metal-EDTA complexes by cell suspensions of the bacterial strain DSM 9103 was studied. The activity of EDTA degradation was the highest in the phase of active cell growth and decreased considerably in the stationary phase, after substrate depletion in the medium. Exponential-phase cells were incubated in HEPES buffer (pH 7.0) with 1 mM of uncomplexed EDTA or EDTA complexes with Mg2+, Ca2+, Mn2+, Pb2+, Co2+, Cd2+, Zn2+, Cu2+, or Fe3+. The metal-EDTA complexes (Me-EDTA) studied could be divided into three groups according to their degradability. EDTA complexes with stability constants K below 10(16) (lg K < 16), such as Mg-EDTA, Ca-EDTA, and Mn-EDTA, as well as uncomplexed EDTA, were degraded by the cell suspensions at a constant rate to completion within 5-10 h of incubation. Me-EDTA complexes with lg K above 16 (Zn-EDTA, Co-EDTA, Pb-EDTA, and Cu-EDTA) were not completely degraded during a 24-hour incubation, which was possibly due to the toxic effect of the metal ions released. No degradation of Cd-EDTA or Fe(III)-EDTA by cell suspensions of strain DSM 9103 was observed under the conditions studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.