Abstract

The primary objective of this work was to investigate how the dominant microbial species change and affect C and N losses under aerobic and aerobic-anaerobic-coupled composting of mown hay (MH, ryegrass) and corn stover (CS) mix. Results showed that C and N losses in aerobic compost of MH-CS were significantly decreased by 19.57-31.47% and 29.04-41.18%, respectively. 16S rRNA gene sequencing indicated that the bacterial microbiota showed significant differences in aerobic and aerobic-anaerobic-coupled composting. LEfSe analyses showed that aerobic composting promoted the growth of bacteria related to lignocellulosic degradation and nitrogen fixation, while aerobic-anaerobic-coupled composting promoted the growth of bacteria related to denitrification. Correlation analysis between bacterial community and environmental factors indicated that moisture content (MC) was the most important environmental factor influencing the differentiation of bacterial growth. KEGG analysis showed that aerobic composting enhanced the amino acid, carbohydrate, and other advantageous metabolic functions compared to that of aerobic-anaerobic-coupled composting. As a conclusion, the addition of 10-20% corn stover (w/w) to new-mown hay (ryegrass) appeared to inhibit anaerobic composting and prompt aerobic composting in MH-CS mix, which led to the effective utilization of mown hay as a resource for composting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call