Abstract

The diversity of soil bacterial and fungal communities is closely related to the soil characteristics and vegetation types in salt marsh ecosystems, but the biogeographic patterns and driving factors in desert-grassland salt marsh (DGSM) are still unclear. In this study, we divided sample plots according to the dominant species in Jiantan Lake wetland of a typical DGSM in Northwestern China. The effects of different environmental factors and halophytes on the structure of soil bacterial and fungal communities were investigated using soil physicochemical characterization and high-throughput sequencing analysis. The diversity of bacterial communities in bulk soil and three dominant halophytes (Kalidium cuspidatum, Nitraria tangutorum and Sophora alopecuroides) were the main factors affecting soil physicochemical properties and halophyte vegetation coverage. Proteobacteria, Bacteroides and Gemmatimonadetes had the highest abundance in bulk soil and the lowest in Sophora alopecuroides sample soil; the opposite was true for Acidobacteria and Chloroflexi. The abundance of Ascomycota in bulk soil and Sophora alopecuroides sample soil was higher than Kalidium cuspidatum and Nitraria tangutorum sample soils, whereas the Mortierellomycota was the highest in Nitraria tangutorum sample soil. Co-occurrence network analysis showed that halophyte cover increased the connectivity and complexity of the bacterial-fungal interaction network, and the halophytic shrub sample soil had a more stable network relationship than the halophytic herb soil. The key taxa of each plot were identified through network relationships. It was found that the keystone taxa of Proteobacteria, Firmicutes, Ascomycota and Chytridiomycota played important roles in maintaining community functions, and most of them were not significantly influenced by soil physicochemical properties. The results of this study provide new insights for a deeper understanding of the halophytes that drive the multifunctionality and stability of soil ecosystems in DGSM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call