Abstract

To estimate the succession and phylogenetic composition of the bacterial communities responsible for the decomposition of rice straw compost under flooded conditions during the cultivation period of paddy rice, denaturing gradient gel electrophoresis (DGGE) analyses targeting 16S rDNA and 16S rRNA, followed by sequencing were conducted in a Japanese paddy field. The DGGE bands of the bacterial communities in the rice straw compost were significantly more numerous in the DNA samples than in the RNA samples. Although the band number of the DNA samples was almost constant throughout the period, RNA samples showed fewer DGGE bands after mid-season drainage than before it. Thus, about 81% of the bacteria present in rice straw compost were considered to be metabolically “active” before mid-season drainage and about 62% after it. The changes in the DGGE patterns of bacterial DNA and RNA before and after mid-season drainage, respectively, were also revealed by cluster analysis and principal component analysis of the DGGE patterns. These results indicated that the bacterial communities of rice straw compost incorporated into flooded paddy fields changed gradually along with the decomposition, except for the period of mid-season drainage, but that they were influenced by mid-season drainage. Members of β-, γ- and δ-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group, Chlorobia, Verrucomicrobia, Chloroflexi, Spirochaetes, Firmicutes (clostridia) and Actinobacteria were present during the decomposition of rice straw compost. Characteristic “active” bacteria among them were as follows: Clostridium, Acinetobacter (γ-Proteobacteria) and β-Proteobacteria before mid-season drainage, Flavobacterium, Chondromyces, Chlorflexi and δ-Proteobacteria after mid-season drainage, and Spirochaeta and myxobacteria throughout the period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.