Abstract

High-strength composites were produced using bacterial cellulose (BC) sheets impregnated with phenolic resin and compressed at 100 MPa. By utilizing this unique material synthesized by bacteria, it was possible to improve the mechanical properties over the previously reported high-strength composites based on fibrillated kraft pulp of plant origin. BC-based composites were stronger, and in particular the Young’s modulus was significantly higher, attaining 28 GPa versus 19 GPa of fibrillated pulp composites. The superior modulus value was attributed to the uniform, continuous, and straight nano-scalar network of cellulosic elements oriented in-plane via the compression of BC pellicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call