Abstract
AbstractThis study investigated the effects of various fire retardants including Firetex®, phosphoric acid, and nanoboron nitride on the thermal and morphological properties of bacterial cellulose (BC) sheets. Hestrin and Schramm medium was inoculated with Gluconacetobacter hansenii and the medium with the bacteria was incubated for 14 days. The obtained BC sheets were freeze-dried and then the dried sheets were immersed with Firetex®, phosohoric acid, and nanoboron nitride for a day. The sheets were once again freeze-dried and weight percent gain (WPG) of the sheets was calculated by using wet and dried weights. The morphological characterization, thermal properties, and structural changes of the obtained sheets were also investigated with scanning electron microscopy (SEM), thermogravimetric analysis, and Fourier-transform infrared spectroscopy, respectively. The weight percent gain was found to increase 31% for the samples with boron nitride and 1040% for the samples with phosphoric acid after the impregnation. The thermogravimetric analysis showed that the impregnation improved the thermal stability of the BC films. The sheets with nanoboron nitride exhibited the best thermal stability, whereas the sheets with Firetex were determined to have the worst thermal stability. The Fourier-transform infrared spectroscopy showed some changes in the structural properties of the all BC sheets with fire retardants. As a result, it can be said that nanoboron nitride at low temperatures (25–250 °C) and Firetex and phosphoric acid at higher temperatures (600–900 °C) showed better thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Thermal Science and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.