Abstract
This work studies the suitability of bacterial cellulose (BC) matrices to prepare enzymatically active nanocomposites, in a framework of more environmentally friendly methodologies. After BC production and purification, two kind of matrices were obtained: BC in aqueous suspension and BC paper. A lipase was immobilised onto the BC matrices by physical adsorption, obtaining Lipase/BC nanocomposites. Neither morphology nor crystallinity, measured by scanning electron microscopy and X-ray diffractometry respectively, of the BC were affected by the binding of the protein. The activity of Lipase/BC suspension and Lipase/BC paper was tested under different conditions, and the operational properties of the enzyme were evaluated. A shift towards higher temperatures, a broader pH activity range, and slight differences in the substrate preference were observed in the immobilised lipase, compared with the free enzyme. Specific activity was higher for Lipase/BC suspension (4.2 U/mg) than for Lipase/BC paper (1.7 U/mg) nanocomposites. However, Lipase/BC paper nanocomposites showed improved thermal stability, reusability, and durability. Enzyme immobilised onto BC paper retained 60% of its activity after 48 h at 60 °C. It maintained 100% of the original activity after being recycled 10 times at pH 7 at 60 °C and it remained active after being stored for more than a month at room temperature. The results suggested that lipase/BC nanocomposites are promising biomaterials for the development of green biotechnological devices with potential application in industrials bioprocesses of detergents and food industry and biomedicine. Lipase/BC paper nanocomposite might be a key component of bioactive paper for developing simple, handheld, and disposable devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.