Abstract

Previous studies have demonstrated that bacterial cellulose (BC) can be semi-continuously produced by utilizing the plastic composite support-rotating disk bioreactor (PCS-RDB). In this study, different additives, such as microcrystalline cellulose (Avicel was used in this study), carboxymethylcellulose (CMC), agar and sodium alginate, were added to the PCS-RDB culture medium to improve the BC productivity and material properties. The produced BC was then analyzed by Fourier transform infrared spectroscopy (FTIR), scan electron microscopy (SEM), thermogravimetric analysis, X-ray diffraction (XRD) and strength analysis. Adding CMC and Avicel can increase the production of BC in PCS-RDB. The highest BC production reached (0.64 g/slice) when 0.8 % Avicel was added. Data from FTIR, XRD and SEM indicated that CMC and Avicel were incorporated into the BC during production, creating a disordered BC structure and thus reducing crystallinity. Both BCs and additive-altered BCs exhibited similar high water retention abilities (98.6–99 %). Additive-altered BCs exhibit similar strain but lower stress. BC production in PCS-RDB was improved by incorporating different additives, while the material properties of the produced BCs were also modified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.