Abstract

Interface solar water evaporation is a mean of rapidly evaporating water using solar energy. However, it is still a challenge to obtain solar evaporators with simple assembly, durability and high photothermal performance. Here, we demonstrated an effective post foaming strategy for treating nitrogen-doped reduced graphene oxide/bacterial cellulose film (F-NRGO@BC) prepared by a simple in situ culture method. The composite film contains hierarchical porous structure and bubbles on the film, achieving an integrated self-floating interface evaporator with excellent light absorption (96.5 %) and high toughness (200.18 kJ m−3). Porous structure and low enthalpy of F-NRGO@BC make a high evaporation rate of 1.68 kg m−2 h−1 and a low thermal conductivity of 0.644 W m−1 K−1 to ensure effective energy efficiency and heat insulation. This design of controlling surface morphology and internal structure provides a novel way for large-scale preparation and high-performance evaporator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.