Abstract

Quorum sensing (QS) plays an important role in biofilm formation and the start-up of biofilm-based reactors, while its involvement in bacterial assembly throughout biofilm development remains underexplored. We investigated the assembly and succession of the bacterial community in a full-scale integrated fixed-film activated sludge (IFAS) process, with emphasis on N-acylhomoserine lactone (AHL)-driven QS. Biofilm development could be divided into two major periods, (i) young biofilm formation phase and (ii) biofilm maturity and update phase. Mature biofilms exhibited lower levels of AHLs compared with young biofilms (p>0.05). A structural equation model, constructed to assess the linkages between AHL level and bacterial community composition as well as environmental factors, indicated that pH significantly influenced both bacterial community composition and AHL content. Along with biofilm development, there was a negative correlation between AHL concentration and community composition variation (coefficients of -0.367 and -0.329). Regarding the lower AHL level in mature biofilms, these results were consistent with the phylogenetic molecular ecological networks (pMENs) analysis, indicating that quorum-quenching (QQ) bacteria occur in keystone taxa in mature biofilms. In addition, based on the pMENs results, the proportion of positive interactions increased from 77.64 to 82.39% in mature biofilms compared to young biofilms, indicating that bacterial cooperation was strengthened in mature biofilms. The QS bacteria were predominant in the keystone taxa of pMENs, with proportions being increased to 62% in mature biofilms, which is conducive for biofilm development. Overall, this study improves our understanding of the involvement of AHL-mediated QS in biofilm development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.