Abstract

In newly commissioned drinking-water polyethylene (PE) pipes, biofilm develops on the inner pipe surface. The microbial community composition from colonization to the establishment of mature biofilms is less known, including the effect on the distributed water quality. Biofilm development was followed through 1.5 years in PE-pipe side streams at two locations of a full-scale, non-chlorinated drinking-water distribution system (leaving a waterworks versus 5–6 km from a waterworks) along with inlet and outlet water quality. Mature biofilms were established after ∼8–9 months, dominated by Proteobacteria, Actinobacteria and Saccharibacteria (61–93% relative abundance), with a higher diversity (OTUs/Shannon Index/16S rRNA gene amplicon sequencing) in pipes in the far end of the distribution system. Comamonadaceae, and specifically Aquabacterium (>30% of reads), dominated young (∼1.5-month-old) biofilms. Young biofilms were linked to increased microbiological counts in drinking water (HPC/ATP/qPCR), while the establishment of mature biofilms led to a drop in HPC and benefited the water quality, highlighting the importance of optimizing commissioning procedures for rapidly achieving mature and stable biofilms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.