Abstract
Bacterial surface adhesion, the first step in many important processes including biofilm formation and tissue invasion, is a fast process that occurs on a time scale of seconds. Adhesion patterns tend to be stochastic and spatially heterogeneous, especially when bacteria are present in low population densities and at early stages of adhesion to the surface. Thus, in order to observe this process, a high degree of temporal resolution is needed across a large surface area in a way that allows several replicates to be monitored. Some of the current methods used to measure bacterial adhesion include microscopy, staining-based microtiter assays, spectroscopy, and PCR. Each of these methods has advantages in assaying aspects of bacterial surface adhesion, but none can capture all features of the process. In the protocol presented here, adapted from Shteindel et al., 2019 , fluorescently-labeled bacteria are monitored in a multi-titer setting using a standard plate fluorimeter and a dye that absorbs light in the fluorophore excitation and emission wavelengths. The advantage of using this dye is that it restricts the depth of the optic layer to the few microns adjacent to the bottom of the microtiter well, eliminating fluorescence originating from unattached bacteria. Another advantage of this method is that this setting does not require any preparatory steps, which enables reading of the sample to be repeated or continuous. The use of a standard multi-titer well allows easy manipulation and provides flexibility in experimental design.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have