Abstract

Bacterial acetone carboxylase catalyzes the ATP-dependent carboxylation of acetone to acetoacetate with the concomitant production of AMP and two inorganic phosphates. The importance of manganese in Rhodobacter capsulatus acetone carboxylase has been established through a combination of physiological, biochemical, and spectroscopic studies. Depletion of manganese from the R. capsulatus growth medium resulted in inhibition of acetone-dependent but not malate-dependent cell growth. Under normal growth conditions (0.5 microm Mn2+ in medium), growth with acetone as the carbon source resulted in a 4-fold increase in intracellular protein-bound manganese over malate-grown cells and the appearance of a Mn2+ EPR signal centered at g = 2 that was absent in malate-grown cells. Acetone carboxylase purified from cells grown with 50 microm Mn2+ had a 1.6-fold higher specific activity and 1.9-fold higher manganese content than cells grown with 0.5 microm Mn2+, consistently yielding a stoichiometry of 1.9 manganese/alpha2beta2gamma2 multimer, or 0.95 manganese/alphabetagamma protomer. Manganese in acetone carboxylase was tightly bound and not removed upon dialysis against various metal ion chelators. The addition of acetone to malate-grown cells grown in medium depleted of manganese resulted in the high level synthesis of acetone carboxylase (15-20% soluble protein), which, upon purification, exhibited 7% of the activity and 6% of the manganese content of the enzyme purified from acetone-grown cells. EPR analysis of purified acetone carboxylase indicates the presence of a mononuclear Mn2+ center, with possible spin coupling of two mononuclear sites. The addition of Mg.ATP or Mg.AMP resulted in EPR spectral changes, whereas the addition of acetone, CO2, inorganic phosphate, and acetoacetate did not perturb the EPR. These studies demonstrate that manganese is essential for acetone carboxylation and suggest a role for manganese in nucleotide binding and activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.