Abstract
Despite the significant advances of imaging techniques nowadays, accurate diagnosis of bacterial infections and real-time monitoring the efficacy of antibiotic therapy in vivo still remain huge challenges. Herein, a self-assembling peptide (FFYEGK) and vancomycin (Van) antibiotic molecule co-modified gadolinium (Gd) MRI nanoaggregate probe (GFV) for detecting Staphylococcus aureus (S. aureus) infection in vivo and monitoring the treatment of S. aureus-infected myositis by using daptomycin (Dap) antibiotic as model are designed and fabricated. The as-prepared GFV probe bears Van molecules, making itself good bacteria-specific targeting, and the peptide in the probe can enhance the longitudinal relaxivity rate (r1 ) after self-assembly due to the π-π stacking. The study showed that, based on the GFV probe, bacterial infections and sterile inflammation can be discriminated, and as few as 105 cfu S. aureus can be detected in vivo with high specificity and accurately. Moreover, the T1 signal of GFV probe at the S. aureus-infected site in mice correlates with the increasing time of Dap treating, indicating the possibility of monitoring the efficacy of antibacterial agents for infected mice based on the as proposed GFV probe. This study shows the potential of GFV probe for diagnosis, evaluation, and prognosis of infectious diseases in clinics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.