Abstract
Bacterial infection and antibiotic resistance are serious threats to human health. This study aimed to develop two novel radiotracers, 18F-NTRP and 18F-NCRP, that possess a specific nitroreductase (NTR) response to image deep-seated bacterial infections using positron emission tomography (PET). This method can distinguish infection from sterile inflammation. 18F-NTRP and 18F-NCRP were synthesized via a one-step method; all the steps usually involved in tracer radiosynthesis were successfully adapted in the All-In-One automated module. After the physiochemical properties of 18F-NTRP and 18F-NCRP were characterized, their specificity and selectivity for NTR were verified in E. coli and S. aureus. The ex vivo biodistribution of the tracers was evaluated in normal mice. MicroPET-CT imaging was performed in mouse models of bacterial infection and inflammation after the administration of 18F-NTRP or 18F-NCRP. Fully automated radiosynthesis of 18F-NTRP and 18F-NCRP was achieved within 90-110min with overall decay-uncorrected, isolated radiochemical yields of 21.24 ± 4.25% and 11.3 ± 3.78%, respectively. The molar activities of 18F-NTRP and 18F-NCRP were 320 ± 40GBq/μmol and 275 ± 33GBq/µmol, respectively. In addition, 18F-NTRP and 18F-NCRP exhibited high selectivity and specificity for NTR response. PET-CT imaging in bacteria-infected mouse models with 18F-NTRP or 18F-NCRP showed significant radioactivity uptake in either E. coli- or S. aureus-infected muscles. The uptake for E. coli-infected muscles, 2.4 ± 0.2%ID/g with 18F-NTRP and 4.05 ± 0.49%ID/g with 18F-NCRP, was up to three times greater than that for uninfected control muscles. Furthermore, for both 18F-NTRP and 18F-NCRP, the uptake in bacterial infection was 2.6 times higher than that in sterile inflammation, allowing an effective distinction of infection from inflammation. 18F-NTRP and 18F-NCRP are worth further investigation to verify their potential clinical application for distinguishing bacterial infection from sterile inflammation via their specific NTR responsiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Nuclear Medicine and Molecular Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.