Abstract
Many approaches have been employed to relieve hypoxia in solid tumors to enhance sensitivity to radiotherapy (RT), including O2 delivery or hydrogen peroxide (H2O2) decomposition strategies. To date, however, these modalities have been restricted by poor O2 loading, rapid O2 leakage, and limited endogenous H2O2 levels. To overcome these limitations, we therefore sought to develop an effective approach for the oxygen-independent treatment of hypoxic tumors. In this study, we designed a novel black phosphorus quantum dot (BPQD)/Escherichia coli (E. coli) hybrid system (BE) capable of facilitating the photothermal therapy (PTT) of hypoxic tumors. A simple electrostatic adsorption approach was used to conjugate BPQDs to E. coli. BE is capable of reliably targeting hypoxic tumors and mediating PTT. BPQDs in BE can directly facilitate X-ray-mediated radiosensitization of tumors, thereby achieving significant RT efficacy in response to lower doses of radiation, effectively and specifically damaging hypoxic tumor tissues to suppress the growth of tumors. Our results highlight this BE system as a novel approach to tumor radiosensitization with great potential for clinical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.