Abstract

In an attempt to attain synergistic therapeutic benefits and address various intrinsic limitations of the highly efficient black phosphorus quantum dots (BPQDs), we fabricated poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) triblock copolymer (PLLA-PEG-PLLA)-based nanocomposites co-loaded with BPQDs and gambogic acid (GA) using the supercritical carbon dioxide (SC-CO2) technology to achieve photoacoustic (PA) imaging-guided synergistic chemo-photothermal therapy. On the one hand, BPQDs displayed near-infrared (NIR)-induced hyperthermia through the high photothermal conversion efficiency. On the other hand, the NIR-responsive release of GA facilitated early apoptosis through specific binding to stress-induced overexpression of heat shock protein (HSP)-90 for combating thermoresistant tumor cells. GA significantly promoted the photothermal therapy (PTT) efficiency by enhancing both early and late apoptosis of BPQDs. Moreover, the encapsulation of BPQDs in the polymer significantly improved their chemical as well as photothermal stabilities. Our findings suggested that these nanocomposites fabricated using the eco-friendly supercritical fluid (SCF) technology provided good protection to the biodegradable BPQDs, offering a great potential towards cancer ablation through augmented synergistic effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.