Abstract

Phagocytic cells are crucial components of the innate immune system preventing Candida albicans mucosal infections. Streptococcus gordonii and Pseudomonas aeruginosa often colonize mucosal sites, along with C. albicans, and yet interkingdom interactions that might alter the survival and escape of fungi from macrophages are not understood. Murine macrophages were coinfected with S. gordonii or P. aeruginosa, along with C. albicans to evaluate changes in fungal survival. S. gordonii increased C. albicans survival and filamentation within macrophage phagosomes, while P. aeruginosa reduced fungal survival and filamentation. Coinfection with S. gordonii resulted in greater escape of C. albicans from macrophages and increased size of fungal microcolonies formed on macrophage monolayers, while coinfection with P. aeruginosa reduced macrophage escape and produced smaller microcolonies. Microcolonies formed in the presence of P. aeruginosa cells outside macrophages also had significantly reduced size that was not found with P. aeruginosa phenazine deletion mutants. S. gordonii cells, as well as S. gordonii heat-fixed culture supernatants, increased C. albicans microcolony biomass but also resulted in microcolony detachment. A heat-resistant, trypsin-sensitive pheromone processed by S. gordonii Eep was needed for these effects. The majority of fungal microcolonies formed on human epithelial monolayers with S. gordonii supernatants developed as large floating structures with no detectable invasion of epithelium, along with reduced gene expression of C. albicansHYR1, EAP1, and HWP2 adhesins. However, a subset of C. albicans microcolonies was smaller and had greater epithelial invasiveness compared to microcolonies grown without S. gordonii Thus, bacteria can alter the killing and escape of C. albicans from macrophages and contribute to changes in C. albicans pathogenicity.IMPORTANCECandida albicans is the predominant fungus colonizing the oral cavity that can have both synergistic and antagonistic interactions with other bacteria. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity. However, it is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. Moreover, we provide evidence for a dual interaction between S. gordonii and C. albicans such that S. gordonii signaling peptides can promote C. albicans commensalism by decreasing microcolony attachment while increasing invasion in epithelial cells. Our results identify bacterial diffusible factors as an attractive target to modify virulence of C. albicans in polymicrobial infections.

Highlights

  • Phagocytic cells are crucial components of the innate immune system preventing Candida albicans mucosal infections

  • Cospecies infection of C. albicans with P. aeruginosa clinical isolates (0635 or PA14) resulted in a 23% decrease in C. albicans survival after 3 h compared to C. albicans alone, which was not observed with the laboratory strain of P. aeruginosa (PAO1)

  • Macrophages act as immune sentinels performing a variety of functions [44], so that macrophage depletion increased the risk for systemic candidiasis and streptococcal bacterial load, both leading to increased mortality in mice [27, 45]

Read more

Summary

Introduction

Phagocytic cells are crucial components of the innate immune system preventing Candida albicans mucosal infections. Coinfection with S. gordonii resulted in greater escape of C. albicans from macrophages and increased size of fungal microcolonies formed on macrophage monolayers, while coinfection with P. aeruginosa reduced macrophage escape and produced smaller microcolonies. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity It is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. P. aeruginosa influences C. albicans morphology by reducing filamentation [21], and can adhere to C. albicans hyphal cells in response to a secreted quorum-sensing molecule, 3-oxododecanoyl-L-homoserine lactone [22]. Prior colonization of lungs by C. albicans increased the clearance of subsequent P. aeruginosa infection via leukocyte recruitment [25]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call