Abstract
Bacterial communities in floodplain and wetland soils cycle elements essential for flora and fauna. The coastal habitats of northern Australia are threatened with increasing saltwater intrusion (SWI) events that will destroy freshwater habitats. The effect of the impending SWI on bacterial communities is unknown. Here, we examined the bacterial communities of a tropical river floodplain located in World Heritage Kakadu National Park. Using 16S rRNA gene pyrosequencing, we measured the baseline bacterial communities from three morphologically distinct regions of the floodplain (lower, upper and backwater swamp), within three zones of the South Alligator River (upstream, cuspate and estuarine funnel or sinuous). Significant differences in the bacterial community were observed at each category of floodplain morphology and river zone. The greatest differences were due to pH and salinity. Large changes in bacterial compositions are predicted to occur with increases in salinity and pH. Saltwater intrusion is predicted to increase substantially in the next decades with sea-level rise, and is likely to cause large and significant changes to the bacterial community with unknown consequences for biogeochemical cycling. Kakadu National Park may benefit from incorporating bacteria into routine studies, because we have shown here that they are sensitive indicators of change, even across small ranges of abiotic variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.