Abstract

The Eurasian or European beaver (Castor fiber) is the second-largest living rodent after the capybara. It is a semi-aquatic animal known for building dams and lodges. They strictly feed on lignocellulose-rich plants and correspondingly harbor cellulolytic microbial communities in their digestive tract. In this study, the bacterial community composition, diversity, and functional profile of different gut compartments ranging from stomach to colon have been explored. A total of 277 bacterial operational taxonomic units (OTUs) at species level were obtained from the gut systems of two males (juvenile and subadult) and one subadult female beaver. In general, cecum and colon are dominated by Firmicutes and Actinobacteria. High abundance of Bacteroidetes was observed only in male juvenile beaver cecum and colon, suggesting that the bacterial composition changes with age. Within the cecum and colon, members of known cellulase-producing bacterial taxa including the families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae 1 were detected. The presence of putative genes encoding cellulolytic and carbohydrate-degrading enzymes indicated also the degradation of recalcitrant plant material in both gut compartments. The bacterial community in the gut systems of the Eurasian beaver differed from that of the North American beaver. Higher abundance of Actinobacteria and lower abundances of Bacteroidetes were recorded in the Eurasian beaver. Similar differences were obtained to bacterial communities of termites and herbivorous animals such as bovine. The data presented in this study provides the first insight into bacterial communities in the gut system of the Eurasian beaver.

Highlights

  • The main component of plant biomass, lignocellulose, consists mainly of the polysaccharides cellulose, hemicellulose, pectin, and lignin

  • The Eurasian beaver gut bacterial communities in different parts of the gastrointestinal tract were characterized by 16S rRNA gene amplicon analysis

  • The gut bacterial community was dominated by Firmicutes and Actinobacteria

Read more

Summary

Introduction

The main component of plant biomass, lignocellulose, consists mainly of the polysaccharides cellulose, hemicellulose, pectin, and lignin. Cellulose is a linear polymer of β-D-glucopyranose connected by β-1,4-linkages (O’Sullivan, 1997). The presence of these β-linkages results in inaccessibility for most animals as these lack enzymes capable to breakdown the β-linkages of cellulose. The degradation of some plant cell walls is difficult as in addition to cellulose they contain hemicellulose and lignin as structural components. Hemicellulose contains many types of polysaccharides, including xyloglucans, xylans, mannans and glucomannans, and β-(1→3,1→4)glucans (Scheller and Ulvskov, 2010).

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.