Abstract

Finding fault elements in linear antenna arrays using bacteria foraging optimization (BFO) is presented. One of the better options of array diagnosis is to perform it by measuring the radiated field, because in this case, removal of the array from its working site is not required and thereby not interrupting its normal operation. This task of fault finding from far-field data is designed as an optimization problem where the difference between the far-field power pattern obtained for a given configuration of failed element(s) and the measured one is minimized w. r. t. the excitations of the array elements. This set of excitations on comparison with the excitations of the original array gives the idea of the fault position and their type, such as either complete fault or partial fault. BFO being relatively new to microwave community when compared with other soft-computing techniques, its performance was observed w. r. t. time of computation and convergence of the iterative process. Possibility of finding the faults from random sample points and use of minimum number of sample points for array fault finding are the novelties of the present work. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.

Highlights

  • Piezo actuators/sensors are mainly used for smart applications because of their (i) fast response time, (ii) high frequency response, (iii) precession control, (iv) capablity of generating high block force, and so forth [1]

  • Piezo sensors and actuators are used for various applications such as vibration control of aerospace structures, development of smart aeroplane wings, propellant flow control in space vehicles, and fuel flow control in automobile engines

  • Piezo-material-based microactuators could be best suitable for these applications due to their precision flow control [7] effected by the gradual application of voltage and due to their low weight

Read more

Summary

Introduction

Piezo actuators/sensors are mainly used for smart applications because of their (i) fast response time, (ii) high frequency response, (iii) precession control, (iv) capablity of generating high block force, and so forth [1]. Piezo sensors and actuators are used for various applications such as vibration control of aerospace structures, development of smart aeroplane wings, propellant flow control in space vehicles, and fuel flow control in automobile engines. Lead zirconate titanate (PZT) is a well-known piezo material that produces electric charges on application of mechanical stress (as sensor) or undergoes dimensional change when subjected to an electric field (as actuator) [2,3,4,5,6]. For these properties PZT is frequently used for fabrication of multilayered actuators. Piezo-material-based microactuators could be best suitable for these applications due to their precision flow control [7] effected by the gradual application of voltage and due to their low weight

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.