Abstract

BackgroundMultidrug resistance (MDR) is a major clinical problem in tertiary hospitals in Tanzania and jeopardizes the life of neonates in critical care units (CCUs). To better understand methods for prevention of MDR infections, this study aimed to determine, among other factors, the role of MDR-Gram-negative bacteria (GNB) contaminating neonatal cots and hands of mothers as possible role in transmission of bacteremia at Bugando Medical Centre (BMC), Mwanza, Tanzania.MethodsThis cross-sectional, hospital-based study was conducted among neonates and their mothers in a neonatal intensive care unit and a neonatology unit at BMC from December 2018 to April 2019. Blood specimens (n = 200) were sub-cultured on 5% sheep blood agar (SBA) and MacConkey agar (MCA) plates. Other specimens (200 neonatal rectal swabs, 200 maternal hand swabs and 200 neonatal cot swabs) were directly inoculated on MCA plates supplemented with 2 μg/ml cefotaxime (MCA-C) for screening of GNB resistant to third generation cephalosporins, r-3GCs. Conventional biochemical tests, Kirby-Bauer technique and resistance to cefoxitin 30 μg were used for identification of bacteria, antibiotic susceptibility testing and detection of MDR-GNB and screening of potential Amp-C beta lactamase producing GNB, respectively.ResultsThe prevalence of culture confirmed bacteremia was 34.5% of which 85.5% were GNB. Fifty-five (93.2%) of GNB isolated from neonatal blood specimens were r-3GCs. On the other hand; 43% of neonates were colonized with GNB r-3GCs, 32% of cots were contaminated with GNB r-3GCs and 18.5% of hands of neonates’ mothers were contaminated with GNB r-3GCs. The prevalences of MDR-GNB isolated from blood culture and GNB r-3GCs isolated from neonatal colonization, cots and mothers’ hands were 96.6, 100, 100 and 94.6%, respectively. Significantly, cyanosis (OR[95%CI]: 3.13[1.51–6.51], p = 0.002), jaundice (OR[95%CI]: 2.10[1.07–4.14], p = 0.031), number of invasive devices (OR[95%CI]: 2.52[1.08–5.85], p = 0.031) and contaminated cot (OR[95%CI]: 2.39[1.26–4.55], p = 0.008) were associated with bacteremia due to GNB. Use of tap water only (OR[95%CI]: 2.12[0.88–5.09], p = 0.040) was protective for bacteremia due to GNB.ConclusionHigh prevalence of MDR-GNB bacteremia and intestinal colonization, and MDR-GNB contaminating cots and mothers’ hands was observed. Improved cots decontamination strategies is crucial to limit the spread of MDR-GNB. Further, clinical presentations and water use should be considered in administration of empirical therapy whilst awaiting culture results.

Highlights

  • Multidrug resistance (MDR) is a major clinical problem in tertiary hospitals in Tanzania and jeopardizes the life of neonates in critical care units (CCUs)

  • On the other hand; 43% of neonates were colonized with Gram-negative bacteria (GNB) r3GCs, 32% of cots were contaminated with GNB resistant to third generation cephalosporins (r-Third generation cephalosporin (3GC)) and 18.5% of hands of neonates’ mothers were contaminated with GNB r-3GCs

  • The prevalences of MDR Gram-negative bacteria (MDR-GNB) isolated from blood culture and GNB r-3GCs isolated from neonatal colonization, cots and mothers’ hands were 96.6, 100, 100 and 94.6%, respectively

Read more

Summary

Introduction

Multidrug resistance (MDR) is a major clinical problem in tertiary hospitals in Tanzania and jeopardizes the life of neonates in critical care units (CCUs). MDR Gram-negative bacteria (MDR-GNB) such as beta-lactamase (extended spectrum beta-lactamase (ESBL), Amp-C betalactamase and carbapenemases) producing Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa are frequently reported, causing infections in critical care units globally [9,10,11,12]. These organisms are responsible for bloodstream infections (BSIs), urinary tract infections (UTIs), pneumonia, and skin and soft tissue infections, resulting in high morbidity and mortality [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call