Abstract

BackgroundCarbapenem-resistant E. coli (CREco) pose a significant public health threat due to their multidrug resistance. Colistin is often a last-resort treatment against CREco; however, the emergence of colistin resistance gene mcr-1 complicates treatment options.MethodsTwo E. coli strains (ECO20 and ECO21), recovered from hospitalized patients in distinct wards, exhibited resistance to carbapenems and colistin. Whole-genome sequencing and phenotypic characterization were employed to study resistance patterns, plasmid profiles, transferability of resistance and virulence genes, and siderophore production capabilities. Comparative genome analysis was used to investigate the genetic environment of mcr-1, blaNDM−7, and virulence clusters.ResultsBoth E. coli strains exhibited thr presence of both mcr-1 and blaNDM−7 genes, showing high resistance to multiple antibiotics. Genomic analysis revealed the clonal transmission of these strains, possessing identical plasmid profiles (pMCR, pNDM, and pVir) associated with colistin resistance, carbapenem resistance, and virulence factors. Conjugation experiments confirmed the transferability of these plasmids, indicating their potential to disseminate resistance and virulence traits to other strains. Comparative genomic analyses unveiled the distribution of mcr-1 (IncX4-type) and blaNDM (IncX3-type) plasmids across diverse bacterial species, emphasizing their adaptability and threat. The novelty of pVir indicates its potential role in driving the evolution of highly adaptable and pathogenic strains.ConclusionsOur findings underscore the co-occurrence of mcr-1, blaNDM−7, and siderophore-producing plasmids in E. coli, which poses a significant concern for global health. This research is crucial to unravel the complex mechanisms governing plasmid transfer and recombination and to devise robust strategies to control their spread in healthcare settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.