Abstract

With the penetration of renewable generation and tightly regulated power electronic loads, the power quality and stability of modern dc microgrids are greatly challenged. To solve this problem, energy storage systems (ESSs) are widely proposed. Unfortunately, most of the existing control methods for ESSs can only ensure the stability of dc microgrids with small signal disturbances, which may not be satisfying for real-time applications where large signal disturbances exist. Moreover, they are usually designed for low boost ratio and low power converters, negating their suitability for grid-scale applications. To ensure the large signal stability of dc microgrids using high boost ratio interleaved converter interfaced ESSs, this article proposes a new backstepping control strategy with finite-time disturbance observers. Its effectiveness is verified by simulation and experiments carried out on an interleaved double dual boost converter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call