Abstract

This paper proposes a back-stepping and neural network hybrid control method for mobile platform and slider of mobile robot used in shipbuilding welding. The kinematics model of the robot is built firstly, and then a motion controller is designed based on the model and back-stepping method. Stability of the controller is proved through use of Liapunov theory. For improving the tracking precision and anti-interference performance of the controller, a neural network is designed to identify the kinematical model of the robot and to adjust the control coefficients in real time based on the tracking errors. The simulation and experiments have been done to verify the effectiveness of the proposed controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.