Abstract

A hovering control design based on back-stepping method is proposed for a dynamic model of an underwater robot with tilting thrusters. In order to achieve various underwater tasks, a robotic platform must be able to maintain its position and orientation against ocean currents and reaction forces from the manipulator's operation. The underwater robot which has four tilting thrusters can carry out six degrees-of-freedom (DOF) motion. A dynamic model is derived for the underwater robot based on hydrodynamic analysis and nonlinear thrust vector mapping. A hovering controller based on a dynamic model is derived by using a back-stepping control method, and disturbance models, such as ocean currents and reaction from the attached manipulator, are designed. Simulations show reasonable results of the control system under disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.