Abstract

In order to allow for the analysis of contaminant layers on powder surfaces, methods of adapting ion beam analysis techniques for use on non-flat surfaces have been developed. In this work, particular attention is given to situations where the dimensions of the surface structures are much larger than the thickness of the film, but much smaller than the ion beam spot size. It is assumed that the surface material is conformal and evenly distributed across the surface. Two methods are discussed; both are designed to analyze backscattered ion energy spectra through the use of available simulation programs. These methods rely on knowledge of the distribution of surface-normal to beam-direction angles present on the surface shape to be studied. Examples of this and other relevant distribution functions corresponding to several types of surface shape will be shown. The methods described here are used to study oxide layers grown thermally on small (≈ 130 μm) spherical titanium powder particles. We also show examples of how to empirically determine the distribution of surface tilt angles present on a surface of unknown shape when the nature of the surface film is known.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.