Abstract

We present an investigation of sample selection effects that influence the observed black hole - bulge relations and its evolution with redshift. We provide a common framework in which all kinds of selection effects on the BH-bulge relations can be investigated, but our main emphasis is on the consequences of using broad-line AGN and their host galaxies to search for evolution in the BH-bulge relation. We identified relevant sources of bias that were not discussed in the literature so far. A particularly important effect is caused by the fact that the active fraction among SMBHs varies considerably with BH mass, in the sense that high-mass BHs are less likely to be active than lower mass ones. In the connection with intrinsic scatter of the BH-bulge relation this effect implies a bias towards a low BH mass at given bulge property. This effect adds to the bias caused by working with luminosity or flux limited samples that were already discussed by others. A quantitative prediction of these biases requires (i) a realistic model of the sample selection function, and (ii) knowledge of relevant underlying distribution functions. For low-redshift AGN samples we can naturally reproduce the flattening of the relation observed in some studies. When extending our analysis to higher redshift samples we are clearly hampered by limited empirical constraints on the various relevant distribution functions. Using a best-guess approach for these distributions we estimate the expected magnitude of sample selection biases for a number of recent observational attempts to study the BH-bulge evolution. In no case do we find statistically significant evidence for an evolving BH-bulge relation. We suggest a possible practical approach to circumvent several of the most problematic issues connected with AGN selection; this could become a powerful diagnostic in future investigations (abridged).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.