Abstract
Multiscale modeling of polymers exchanges information between coarse and fine representations of molecules to capture material properties over a wide range of spatial and temporal scales. Restoring details at a finer scale requires us to generate information following embedded physics and statistics of the models at two different levels of description. Techniques designed to address this persistent challenge balance among accuracy, efficiency, and general applicability. In this work, we present an image-based approach for structural backmapping from coarse-grained to atomistic models with cis-1,4 polyisoprene melts as an illustrative example. Through machine learning, we train conditional generative adversarial networks on the correspondence between configurations at the levels considered. The trained model is subsequently applied to provide predictions of atomistic structures from the input coarse-grained configurations. The effect of different data representation schemes on training and prediction quality is examined. Our proposed backmapping approach shows remarkable efficiency and transferability over different molecular weights in the melt based on training sets constructed from oligomeric compounds. We anticipate that this versatile backmapping approach can be readily extended to other complex systems to provide high-fidelity initial configurations with minimal human intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.