Abstract

Conserving biodiversity in the face of expanding human degradation of ecosystems is facilitated by understanding the natural state of communities prior to the impact of anthropogenic disruptions. Reconstructing communities and ecosystems as they existed in the past requires data from the fossil record on their species composition, richness, and abundance. Fossil data are potentially different from data collected from living communities in their spatial, temporal, and taxonomic scales and these differences must be understood so that accurate comparisons can be made between past and present states of living communities. Fifty-four long-term ecological studies of a wide range of taxon groups (mammals, invertebrates, plants, corals) and habitat types (marine, terrestrial, freshwater) were surveyed from the published ecological literature to determine the range of spatial, temporal and taxonomic scales at which data are commonly collected in ecological research. Long-term ecological studies encompass spatial scales from 50m2 to 100,000km2 and temporal scales from 5 to 100 years. Most studies resolve taxa to the species level and count individuals, although plant and coral studies sometimes quantify species by percent cover. All taxon groups and habitat types were studied across a wide range of spatial and temporal scales. Whether or not data from fossils can be collected and analysed at scales comparable to data from living communities depends on the type of organism, as well as the taphonomic circumstances of preservation, accumulation and deposition. Marine invertebrates can be sampled at comparable spatial and taxonomic scales to living invertebrates, but time averaging degrades the temporal resolution of the fossil deposits. Vertebrate fossils provide data at comparable taxonomic scales with some reduction in spatial and temporal resolution relative to live data. Plant fossils and pollen are capable of being sampled at temporal resolutions comparable to modern ecological studies, but pollen data are prone to spatial averaging and have much poorer taxonomic resolution than censuses of living communities. It is important to be mindful of the limitations that scale mismatches produce in the ability to use fossil data to resolve ecological events and to compare the details of ecological composition and structure between the present and the past.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call