Abstract
We present two novel approaches to state detection of qubits defined with trapped ions. The first uses simple pulse sequences from a mode-locked laser to induce state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed.The second employs the long lived F state in Yb+ which has been used in quantum information science almost exclusively for clocks and optical-frequency qubits. We describe how this resource can be used in conjunction with the ground state S1/2 manifold to aid in the scaling of trapped ion quantum information science. Narrow-band optical pumping into the 2F7/2 from one of the conventional 2S1/2 qubit states is projected to achieve a higher state preparation and measurement (SPAM) fidelity than any other demonstrated technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.