Abstract

A skip and fill algorithm is developed to digitally self-calibrate pipelined analog-to-digital converters (ADC's) in real time. The proposed digital calibration technique is applicable to capacitor-ratioed multiplying digital-to-analog converters (MDACs) commonly used in multistep or pipelined ADCs. This background calibration process can replace, in effect, a trimming procedure usually done in the factory with a hidden electronic calibration. Unlike other self-calibration techniques working in the foreground, the proposed technique is based on the concept of skipping conversion cycles randomly but filling in data later by nonlinear interpolation. This opens up the feasibility of digitally implementing calibration hardware and simplifying the task of self-calibrating multistep or pipelined ADCs. The proposed method improves the performance of the inherently fast ADCs by maintaining simple system architectures. To measure errors resulting from capacitor mismatch, of amp DC gain, offset, and switch feedthrough in real time, the calibration test signal is injected in place of the input signal using a split-reference injection technique. Ultimately, the missing signal within two-thirds of the Nyquist bandwidth is recovered with 16-b accuracy using a forty-fourth order polynomial interpolation, behaving essentially as an FIR filter,.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.