Abstract
Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product. In the final biosynthetic step, the mature linear peptide precursor is subject to head-to-tail cyclization by the thioesterase (TE) domain in the C-terminal module. Since the TE domains can autonomously catalyze the cyclization of diverse linear peptide substrates, isolated TE domains can be used to produce natural product derivatives. To understand the mechanism of TE domains in NRPSs as a base for therapeutic applications, we investigated the TE domain (residues 6236-6486) of tyrocidine synthetase TycC by NMR. Tyrocidine is a cyclic decapeptide with antibiotic activity, and TycC-TE catalyzes the cyclization of the linear decapeptide precursor. Here, we report the backbone resonance assignments of TycC-TE. The assignments of TycC-TE provide the basis for NMR investigations of the structure and substrate-recognition mode of the TE domain in NRPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.