Abstract

Antibody heavy chain variable domains (VH) lacking their light chain (VL) partner are prime candidates for the design of minimum-size immunoreagents. To obtain structural information about isolated VH domains, a human VH was labelled with 15N or doubly labelled with both 15N and 13C and was studied by heteronuclear nuclear magnetic resonance spectroscopy. Most (90%) of the 1H and 15N main-chain signals were assigned through two-dimensional TOCSY and NOESY experiments on the unlabelled VH and three-dimensional heteronuclear multiple quantum correlation TOCSY and NOESY experiments on the 15N-labelled VH. Four short stretches of the polypeptide chain could only be assigned on the basis of three-dimensional HNCA and HN(CO)CA experiments on the 13C-/15N-labelled protein. Long-range interstrand backbone NOEs suggest the presence of two adjacent beta-sheets formed by altogether nine antiparallel beta-strands. 3JNHC alpha H coupling constants and the location of slowly exchanging backbone amides support this interpretation. The secondary structure of the isolated VH is identical to that of heavy chain variable domains in intact antibodies, where VH domains are packed against a VL domain. The backbone assignments of the VH made it possible to locate its Protein A binding site. Chemical shift movements after complexing with the IgG binding fragment of Protein A indicate binding through one of the two beta-sheets of the VH. This beta-sheet is solvent exposed in intact antibodies. The Protein A binding site obviously differs from that on the Fc portion of immunoglobulins and is unique to members of the human VHIII gene subgroup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.