Abstract
The E.coli maltose binding protein (MBP) is a 42.5kDa molecule widely employed in many biotechnology applications. Because of its molecular size, it has become the main model system for the development of solution NMR methods adapted to large biomolecular targets. Here, we report virtually complete (~ 90%) backbone resonance assignments obtained on a microcrystalline sample of MBP with 1H-detected solid-state NMR at fast (> 100kHz) magic-angle spinning. We additionally present the detailed description of the methodology employed for the preparation of the sample and the acquisition and analysis of the NMR spectra. The chemical shifts, obtained with a single uniformly 15N,13C-labelled and fully-protonated sample and about 2 weeks on a 800MHz NMR spectrometer, have been deposited to the BMRB under the accession number 50089.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.