Abstract

Two-dimensional (2D) (13)C-(13)C NMR correlation spectra were collected on (13)C-enriched dragline silk fibers produced from Nephila clavipes spiders. The 2D NMR spectra were acquired under fast magic-angle spinning (MAS) and dipolar-assisted rotational resonance (DARR) recoupling to enhance magnetization transfer between (13)C spins. Spectra obtained with short (150 ms) recoupling periods were utilized to extract distinct chemical shifts for all carbon resonances of each labeled amino acid in the silk spectra, resulting in a complete resonance assignment. The NMR results presented here permit extraction of the precise chemical shift of the carbonyl environment for each (13)C-labeled amino acid in spider silk for the first time. Spectra collected with longer recoupling periods (1 s) were implemented to detect intermolecular magnetization exchange between neighboring amino acids. This information is used to ascribe NMR resonances to the specific repetitive amino acid motifs prevalent in spider silk proteins. These results indicate that glycine and alanine are both present in two distinct structural environments: a disordered 3(1)-helical conformation and an ordered beta-sheet structure. The former can be ascribed to the Gly-Gly-Ala motif while the latter is assigned to the poly(Ala) and poly(Gly-Ala) domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.