Abstract

In this paper, we extend the concept of back surface recombination through a study of a silicon mono facial solar cell in static regime and under polychromatic illumination. Back surface recombination velocities noted Sbe, Sbj and Sbr are determined for which respectively we derived, the power, the fill factor and the conversion efficiency, that become constant whatever the thickness of the solar cell. We have then obtained the expression of the minority carrier’s density in the base from the continuity equation. We then have determined the photocurrent density, the photo voltage, the power, the fill factor and finally the conversion efficiency.

Highlights

  • Today one of the main objectives in the domain of the photovoltaic energy is to improve the solar cell efficiency and to reduce the manufacturing cost

  • We propose in this paper, to study the effect of both the solar cell thickness and the back surface recombination velocity, through the carrier density, the photocurrent density, the photovoltage, the power, the fill factor and the conversion efficiency

  • We plot on the curves 4 and 5, the profile of the photocurrent density versus junction recombination velocity ( Sf ) respectively for a given thickness H and for different Sb values

Read more

Summary

Introduction

Today one of the main objectives in the domain of the photovoltaic energy is to improve the solar cell efficiency and to reduce the manufacturing cost. The conversion efficiency in photovoltaic solar is in the order of 20% in the laboratories but only in the order of 17% to the commercial level. This objective has to optimize the solar cell thickness (H) and the recombination parameters in the bulk and surfaces. We propose in this paper, to study the effect of both the solar cell thickness and the back surface recombination velocity, through the carrier density, the photocurrent density, the photovoltage, the power, the fill factor and the conversion efficiency. When the solar cell is illuminated by the emitter front side

Minority Carrier Density
Photovoltage
Photocurrent Density
Photo Voltage
Conversion Efficiency
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.